1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// Copyright (c) 2022 MASSA LABS <info@massa.net>

use crate::error::ModelsError;
use crate::serialization::{VecU8Deserializer, VecU8Serializer};
use massa_serialization::{
    Deserializer, SerializeError, Serializer, U64VarIntDeserializer, U64VarIntSerializer,
};
use nom::error::{context, ContextError, ParseError};
use nom::multi::length_count;
use nom::sequence::tuple;
use nom::{IResult, Parser};
use std::collections::BTreeMap;
use std::ops::Bound::{self, Included};

/// Datastore entry for Ledger & `ExecuteSC` Operation
/// A Datastore is a Key Value store where
/// Key: Byte array (max length should be 255)
/// Value: Byte array
/// What is stored can be arbitrary bytes but can often be smart contract bytecode (aka WASM binary)
pub type Datastore = BTreeMap<Vec<u8>, Vec<u8>>;

/// Serializer for `Datastore`
#[derive(Default)]
pub struct DatastoreSerializer {
    u64_serializer: U64VarIntSerializer,
    vec_u8_serializer: VecU8Serializer,
}

impl DatastoreSerializer {
    /// Creates a new `DatastoreSerializer`
    pub fn new() -> Self {
        Self {
            u64_serializer: U64VarIntSerializer::new(),
            vec_u8_serializer: VecU8Serializer::new(),
        }
    }
}

impl Serializer<Datastore> for DatastoreSerializer {
    /// ## Example
    /// ```rust
    /// use std::collections::BTreeMap;
    /// use massa_models::datastore::DatastoreSerializer;
    /// use massa_serialization::Serializer;
    ///
    /// let serializer = DatastoreSerializer::new();
    /// let mut buffer = Vec::new();
    /// let mut datastore = BTreeMap::new();
    /// datastore.insert(vec![1, 2, 3], vec![4, 5, 6]);
    /// datastore.insert(vec![3, 4, 5], vec![6, 7, 8]);
    /// serializer.serialize(&datastore, &mut buffer).unwrap();
    /// ```
    fn serialize(
        &self,
        value: &BTreeMap<Vec<u8>, Vec<u8>>,
        buffer: &mut Vec<u8>,
    ) -> Result<(), SerializeError> {
        let entry_count: u64 = value.len().try_into().map_err(|err| {
            SerializeError::GeneralError(format!(
                "too many entries in ConsensusLedgerSubset: {}",
                err
            ))
        })?;
        self.u64_serializer.serialize(&entry_count, buffer)?;
        for (key, value) in value.iter() {
            self.vec_u8_serializer.serialize(key, buffer)?;
            self.vec_u8_serializer.serialize(value, buffer)?;
        }
        Ok(())
    }
}

/// Deserializer for `Datastore` field in `LedgerEntry`
pub struct DatastoreDeserializer {
    length_deserializer: U64VarIntDeserializer,
    key_deserializer: VecU8Deserializer,
    value_deserializer: VecU8Deserializer,
}

impl DatastoreDeserializer {
    /// Creates a new `DatastoreDeserializer`
    pub fn new(
        max_datastore_entry_count: u64,
        max_datastore_key_length: u8,
        max_datastore_value_length: u64,
    ) -> Self {
        Self {
            length_deserializer: U64VarIntDeserializer::new(
                Included(u64::MIN),
                Included(max_datastore_entry_count),
            ),
            key_deserializer: VecU8Deserializer::new(
                Included(u64::MIN),
                Included(max_datastore_key_length as u64),
            ),
            value_deserializer: VecU8Deserializer::new(
                Included(u64::MIN),
                Included(max_datastore_value_length),
            ),
        }
    }
}

impl Deserializer<Datastore> for DatastoreDeserializer {
    /// ## Example
    /// ```rust
    /// use std::collections::BTreeMap;
    /// use massa_models::datastore::{DatastoreDeserializer, DatastoreSerializer};
    /// use massa_serialization::{Serializer, Deserializer, DeserializeError};
    ///
    /// let serializer = DatastoreSerializer::new();
    /// let deserializer = DatastoreDeserializer::new(10000, 255, 10000);
    /// let mut buffer = Vec::new();
    /// let mut datastore = BTreeMap::new();
    /// datastore.insert(vec![1, 2, 3], vec![4, 5, 6]);
    /// datastore.insert(vec![3, 4, 5], vec![6, 7, 8]);
    /// serializer.serialize(&datastore, &mut buffer).unwrap();
    /// let (rest, deserialized) = deserializer.deserialize::<DeserializeError>(&buffer).unwrap();
    /// assert_eq!(rest.len(), 0);
    /// assert_eq!(deserialized, datastore);
    /// ```
    fn deserialize<'a, E: ParseError<&'a [u8]> + ContextError<&'a [u8]>>(
        &self,
        buffer: &'a [u8],
    ) -> IResult<&'a [u8], BTreeMap<Vec<u8>, Vec<u8>>, E> {
        context(
            "Failed Datastore deserialization",
            length_count(
                context("Failed length deserialization", |input| {
                    self.length_deserializer.deserialize(input)
                }),
                tuple((
                    context("Failed key deserialization", |input| {
                        self.key_deserializer.deserialize(input)
                    }),
                    context("Failed value deserialization", |input| {
                        self.value_deserializer.deserialize(input)
                    }),
                )),
            ),
        )
        .map(|elements| elements.into_iter().collect())
        .parse(buffer)
    }
}

/// For lexicographically ordered keys,
/// gets the upper and lower bound of keys matching a prefix.
pub fn get_prefix_bounds(prefix: &[u8]) -> (std::ops::Bound<Vec<u8>>, std::ops::Bound<Vec<u8>>) {
    if prefix.is_empty() {
        return (std::ops::Bound::Unbounded, std::ops::Bound::Unbounded);
    }
    let n_keep = prefix
        .iter()
        .enumerate()
        .rev()
        .find_map(|(i, v)| if v < &255 { Some(i + 1) } else { None })
        .unwrap_or(0);
    let mut prefix_end = prefix[..n_keep].to_vec();
    if let Some(v) = prefix_end.last_mut() {
        *v += 1;
    }
    (
        std::ops::Bound::Included(prefix.to_vec()),
        if !prefix_end.is_empty() {
            std::ops::Bound::Excluded(prefix_end)
        } else {
            std::ops::Bound::Unbounded
        },
    )
}

/// Return the intersection of two ranges
pub fn range_intersection<T: Ord>(
    r1: (std::ops::Bound<T>, std::ops::Bound<T>),
    r2: (std::ops::Bound<T>, std::ops::Bound<T>),
) -> Option<(std::ops::Bound<T>, std::ops::Bound<T>)> {
    use std::cmp::{max, min};
    use std::ops::Bound;

    let (r1s, r1e) = r1;
    let (r2s, r2e) = r2;

    // Determine the start of the intersection
    let start = match (r1s, r2s) {
        (Bound::Included(a), Bound::Included(b)) => Bound::Included(max(a, b)),
        (Bound::Included(a), Bound::Excluded(b)) => {
            if a > b {
                Bound::Included(a)
            } else {
                Bound::Excluded(b)
            }
        }
        (Bound::Excluded(a), Bound::Included(b)) => {
            if b > a {
                Bound::Included(b)
            } else {
                Bound::Excluded(a)
            }
        }
        (Bound::Excluded(a), Bound::Excluded(b)) => Bound::Excluded(max(a, b)),
        (Bound::Unbounded, other) => other,
        (other, Bound::Unbounded) => other,
    };

    // Determine the end of the intersection
    let end = match (r1e, r2e) {
        (Bound::Included(a), Bound::Included(b)) => Bound::Included(min(a, b)),
        (Bound::Included(a), Bound::Excluded(b)) => {
            if a < b {
                Bound::Included(a)
            } else {
                Bound::Excluded(b)
            }
        }
        (Bound::Excluded(a), Bound::Included(b)) => {
            if b < a {
                Bound::Included(b)
            } else {
                Bound::Excluded(a)
            }
        }
        (Bound::Excluded(a), Bound::Excluded(b)) => Bound::Excluded(min(a, b)),
        (Bound::Unbounded, other) => other,
        (other, Bound::Unbounded) => other,
    };

    // Ensure the resulting range is valid
    match (&start, &end) {
        (Bound::Included(a), Bound::Included(b)) if a > b => None,
        (Bound::Included(a), Bound::Excluded(b)) if a >= b => None,
        (Bound::Excluded(a), Bound::Included(b)) if a >= b => None,
        (Bound::Excluded(a), Bound::Excluded(b)) if a >= b => None,
        _ => Some((start, end)),
    }
}

/// Checks and cleans up a datastore key range query
/// Returns: (prefix, start_bound, end_bound) or error
/// Note: only useful to cleanup user-supplied requests (API/ABI)
#[allow(clippy::type_complexity)]
pub fn cleanup_datastore_key_range_query(
    prefix: &[u8],
    start_bound: Bound<Vec<u8>>,
    end_bound: Bound<Vec<u8>>,
    count: Option<u32>,
    max_datastore_key_length: u8,
    max_datastore_query_config: Option<u32>,
) -> Result<(Vec<u8>, Bound<Vec<u8>>, Bound<Vec<u8>>), ModelsError> {
    // check item count
    let count = count.or(max_datastore_query_config);
    if let (Some(cnt), Some(max_cnt)) = (count.as_ref(), max_datastore_query_config.as_ref()) {
        if cnt > max_cnt {
            return Err(ModelsError::ErrorRaised(format!(
                "max item count in datastore key query is {} but {} items were queried",
                max_cnt, cnt
            )));
        }
    }

    // check prefix length
    let prefix = if prefix.len() > max_datastore_key_length as usize {
        // prefix is too long: it won't match anything. Adjust bounds to reflect this.
        return Ok((
            Vec::new(),
            std::ops::Bound::Excluded(Vec::new()),
            std::ops::Bound::Excluded(Vec::new()),
        ));
    } else {
        prefix.to_vec()
    };

    // If the key is longer than the max possible length
    // it will be by definition excluded
    // and since its truncation is before, it will also be excluded
    let start_bound = match start_bound {
        std::ops::Bound::Unbounded => std::ops::Bound::Unbounded,
        std::ops::Bound::Excluded(mut k) => {
            k.truncate(max_datastore_key_length as usize);
            Bound::Excluded(k)
        }
        std::ops::Bound::Included(mut k) => {
            if k.len() > max_datastore_key_length as usize {
                k.truncate(max_datastore_key_length as usize);
                Bound::Excluded(k)
            } else {
                Bound::Included(k)
            }
        }
    };

    // If the key is longer than the max possible length
    // it will be by definition excluded
    // but its truncation is included
    let end_bound = match end_bound {
        std::ops::Bound::Unbounded => std::ops::Bound::Unbounded,
        std::ops::Bound::Included(mut k) => {
            k.truncate(max_datastore_key_length as usize);
            Bound::Included(k)
        }
        std::ops::Bound::Excluded(mut k) => {
            if k.len() > max_datastore_key_length as usize {
                k.truncate(max_datastore_key_length as usize);
                Bound::Included(k)
            } else {
                Bound::Excluded(k)
            }
        }
    };

    Ok((prefix, start_bound, end_bound))
}

#[cfg(test)]
mod tests {

    use crate::config::{
        MAX_OPERATION_DATASTORE_ENTRY_COUNT, MAX_OPERATION_DATASTORE_KEY_LENGTH,
        MAX_OPERATION_DATASTORE_VALUE_LENGTH,
    };

    use super::*;
    use massa_serialization::DeserializeError;
    use serde::{Deserialize, Serialize};
    use serde_with::serde_as;

    #[serde_as]
    #[derive(Debug, Serialize, Deserialize, PartialEq)]
    struct SerdeWrapper(#[serde_as(as = "Vec<(_, _)>")] Datastore);

    #[test]
    fn test_ser_der() {
        let datastore = BTreeMap::from([
            (vec![1, 2], vec![3, 4]),
            (vec![5, 6, 7], vec![8]),
            (vec![9], vec![10, 11, 12, 13, 14]),
            (vec![], vec![]),
        ]);

        let datastore_serializer = DatastoreSerializer::new();
        let mut buffer = Vec::new();
        datastore_serializer
            .serialize(&datastore, &mut buffer)
            .expect("Should not fail while serializing Datastore");

        let datastore_deserializer = DatastoreDeserializer::new(
            MAX_OPERATION_DATASTORE_ENTRY_COUNT,
            MAX_OPERATION_DATASTORE_KEY_LENGTH,
            MAX_OPERATION_DATASTORE_VALUE_LENGTH,
        );
        let (_, datastore_der) = datastore_deserializer
            .deserialize::<DeserializeError>(&buffer)
            .unwrap();
        assert_eq!(datastore, datastore_der);
    }

    #[test]
    #[should_panic]
    fn test_der_fail() {
        let max_operation_datastore_entry_count: usize = 10;

        // a datastore too much entries
        let datastore = std::iter::repeat(())
            .enumerate()
            .map(|(i, _)| (vec![i as u8, 1, 2], vec![33, 44, 55]))
            .take(max_operation_datastore_entry_count + 1)
            .collect();

        let datastore_serializer = DatastoreSerializer::new();
        let mut buffer = Vec::new();
        datastore_serializer
            .serialize(&datastore, &mut buffer)
            .expect("Should not fail while serializing Datastore");

        let datastore_deserializer = DatastoreDeserializer::new(
            max_operation_datastore_entry_count as u64,
            MAX_OPERATION_DATASTORE_KEY_LENGTH,
            MAX_OPERATION_DATASTORE_VALUE_LENGTH,
        );
        let (_, _datastore_der) = datastore_deserializer
            .deserialize::<DeserializeError>(&buffer)
            .unwrap();
    }

    #[test]
    fn test_datastore_serde() {
        let expected_datastore: Datastore = BTreeMap::from([
            (vec![1, 2], vec![3, 4]),
            (vec![5, 6, 7], vec![8]),
            (vec![9], vec![10, 11, 12, 13, 14]),
            (vec![], vec![]),
        ]);

        let wrapper = SerdeWrapper(expected_datastore.clone());
        let serialized = serde_json::to_string(&wrapper).unwrap();
        let actual_wrapper: SerdeWrapper = serde_json::from_str(&serialized).unwrap();

        assert_eq!(actual_wrapper.0, expected_datastore);
    }

    #[test]
    fn test_range_intersection() {
        // Overlapping ranges
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            let expected = (std::ops::Bound::Included(3), std::ops::Bound::Included(5));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Fully overlapping ranges
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Included(10));
            let r2 = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            let expected = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Adjacent ranges (no overlap)
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Excluded(5));
            let r2 = (std::ops::Bound::Included(5), std::ops::Bound::Included(10));
            assert_eq!(range_intersection(r1, r2), None);
        }

        // Exact match
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            let expected = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Unbounded start
        {
            let r1 = (std::ops::Bound::Unbounded, std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            let expected = (std::ops::Bound::Included(3), std::ops::Bound::Included(5));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Unbounded end
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Unbounded);
            let r2 = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            let expected = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Both ranges unbounded
        {
            let r1 = (std::ops::Bound::Unbounded, std::ops::Bound::Unbounded);
            let r2 = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            let expected = (std::ops::Bound::Included(3), std::ops::Bound::Included(7));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }

        // Non-overlapping ranges
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Included(6), std::ops::Bound::Included(10));
            assert_eq!(range_intersection(r1, r2), None);
        }

        // Empty range
        {
            let r1 = (std::ops::Bound::Included(1), std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Included(5), std::ops::Bound::Excluded(5));
            assert_eq!(range_intersection(r1, r2), None);
        }

        // Edge case: Excluded bounds
        {
            let r1 = (std::ops::Bound::Excluded(1), std::ops::Bound::Included(5));
            let r2 = (std::ops::Bound::Excluded(1), std::ops::Bound::Excluded(5));
            let expected = (std::ops::Bound::Excluded(1), std::ops::Bound::Excluded(5));
            assert_eq!(range_intersection(r1, r2), Some(expected));
        }
    }

    #[test]
    fn test_cleanup_datastore_key_range_query() {
        // Case 1: Valid inputs
        let prefix = b"prfx".to_vec();
        let start_bound = Bound::Included(b"start_key".to_vec());
        let end_bound = Bound::Excluded(b"end_key".to_vec());
        let count = Some(10);
        let max_length = 20;
        let max_query_config = Some(50);

        let result = cleanup_datastore_key_range_query(
            &prefix,
            start_bound.clone(),
            end_bound.clone(),
            count,
            max_length,
            max_query_config,
        );
        assert!(result.is_ok());
        let (res_prefix, res_start, res_end) = result.unwrap();
        assert_eq!(res_prefix, prefix);
        assert_eq!(res_start, start_bound);
        assert_eq!(res_end, end_bound);

        // Case 2: Prefix length exceeds max length
        let long_prefix = vec![b'a'; 30];
        let result = cleanup_datastore_key_range_query(
            &long_prefix,
            start_bound.clone(),
            end_bound.clone(),
            None,
            10,
            None,
        );
        assert!(result.is_ok());
        let (res_prefix, res_start, res_end) = result.unwrap();
        assert!(res_prefix.is_empty());
        assert_eq!(res_start, Bound::Excluded(Vec::new()));
        assert_eq!(res_end, Bound::Excluded(Vec::new()));

        // Case 3: Keys exceeding max length in bounds
        let long_key = vec![b'b'; 25];
        let start_bound = Bound::Included(long_key.clone());
        let end_bound = Bound::Excluded(long_key.clone());
        let result = cleanup_datastore_key_range_query(
            &prefix,
            start_bound.clone(),
            end_bound.clone(),
            None,
            10,
            None,
        );
        assert!(result.is_ok());
        let (res_prefix, res_start, res_end) = result.unwrap();
        assert_eq!(res_prefix, prefix);
        assert_eq!(
            res_start,
            Bound::Excluded(long_key[0..10].to_vec()) // Start key truncated
        );
        assert_eq!(
            res_end,
            Bound::Included(long_key[0..10].to_vec()) // End key truncated
        );

        // Case 4: Count exceeds max query config
        let result = cleanup_datastore_key_range_query(
            &prefix,
            Bound::Unbounded,
            Bound::Unbounded,
            Some(100),
            10,
            Some(50),
        );
        assert!(result.is_err());
        if let Err(ModelsError::ErrorRaised(msg)) = result {
            assert!(msg.contains(
                "max item count in datastore key query is 50 but 100 items were queried"
            ));
        } else {
            panic!("Expected ModelsError::ErrorRaised");
        }

        // Case 5: No count or max query config provided
        let result = cleanup_datastore_key_range_query(
            &prefix,
            Bound::Unbounded,
            Bound::Unbounded,
            None,
            10,
            None,
        );
        assert!(result.is_ok());
        let (res_prefix, res_start, res_end) = result.unwrap();
        assert_eq!(res_prefix, prefix);
        assert_eq!(res_start, Bound::Unbounded);
        assert_eq!(res_end, Bound::Unbounded);
    }
}