1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright (c) 2022 MASSA LABS <info@massa.net>

use crate::error::MassaHashError;
use crate::settings::HASH_SIZE_BYTES;
use massa_serialization::{Deserializer, SerializeError, Serializer};
use nom::{
    error::{context, ContextError, ParseError},
    IResult,
};
use std::{cmp::Ordering, convert::TryInto, str::FromStr};

/// Hash wrapper, the underlying hash type is `Blake3`
///
/// The motivations for selecting Blake3 were-
/// Speed: Blake3 is significantly faster than other popular hashing algorithms, such as SHA-256 and SHA-3.
/// This is largely due to its ability to leverage modern CPU architectures and instruction sets, as well as its optimized implementation.
///
/// Security: Blake3 is designed to be highly secure and resistant to a wide range of attacks, including collision attacks,
/// length-extension attacks, and timing attacks. It also offers better resistance to side-channel attacks than many other hashing algorithms.
///
/// Flexibility: Blake3 is highly flexible and can be used in a variety of applications, including as a general-purpose hash function,
/// as a key derivation function, and as a message authentication code. It also supports a wide range of input sizes and can produce output
/// of any desired length.

/// Scalability: Blake3 can efficiently take advantage of multiple cores and SIMD (single instruction, multiple data) instructions,
/// allowing it to scale well on modern CPUs.
///
/// Improved Compression Function: The compression function used in Blake3 is an improved version of the one used in its predecessor, Blake2.
/// This improved compression function offers better diffusion and mixing properties, which contributes to its increased security.
///
/// Keyed Hashing: Blake3 supports keyed hashing, which allows users to use a secret key to generate a unique hash value.
/// This feature can be useful in applications that require message authentication or integrity verification.
///
/// Tree Hashing: Blake3 supports tree hashing, which allows users to hash large files or data structures in a parallel and efficient manner.
/// This feature can be useful in applications that involve large-scale data processing, such as cloud storage or distributed file systems.
///
/// Open Source: Blake3 is an open-source algorithm, which means that its code is publicly available for review and auditing by anyone.
/// This can help improve its security and reliability, as well as increase transparency and trust among users.
///
#[derive(Eq, PartialEq, Copy, Clone, Hash)]
pub struct Hash(blake3::Hash);

impl PartialOrd for Hash {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.0.as_bytes().cmp(other.0.as_bytes()))
    }
}

/// In massa, this function is generally useful for data structures that performs ordering and where hashes are used
/// as keys. For e.g., it is used for the BTreeMap where the order of the addresses is to be maintained.
/// This function helps to have a single coherent BTreeMap which is then used to perform the draw
/// See Pos-Worker for more details.

impl Ord for Hash {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.as_bytes().cmp(other.0.as_bytes())
    }
}

impl std::fmt::Display for Hash {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.to_bs58_check())
    }
}

impl std::fmt::Debug for Hash {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        std::fmt::Display::fmt(self, f)
    }
}

impl Hash {
    /// Creates a hash full of zeros bytes.
    pub fn zero() -> Self {
        Hash(blake3::Hash::from([0; HASH_SIZE_BYTES]))
    }

    /// Compute a hash from data.
    ///
    /// # Example
    ///  ```
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// ```
    pub fn compute_from(data: &[u8]) -> Self {
        Hash(blake3::hash(data))
    }

    /// Compute a hash from tuple of byte arrays.
    ///
    /// # Example
    ///  ```
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from_tuple(&[&"hello".as_bytes(), &"world".as_bytes()]);
    /// ```
    pub fn compute_from_tuple(data: &[&[u8]]) -> Self {
        let mut hasher = blake3::Hasher::new();
        for d in data {
            hasher.update(&(d.len() as u64).to_be_bytes());
            hasher.update(d);
        }
        Hash(hasher.finalize())
    }

    /// Serialize a Hash using `bs58` encoding with checksum.
    ///
    /// # Example
    ///  ```
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized: String = hash.to_bs58_check();
    /// ```
    /// Motivations for using base58 encoding:
    ///
    /// base58_check is like base64 but-
    /// * fully standardized (no = vs /)
    /// * no weird characters (eg. +) only alphanumeric
    /// * ambiguous letters combined (eg. O vs 0, or l vs 1)
    /// * contains a checksum at the end to detect typing errors
    ///    
    pub fn to_bs58_check(&self) -> String {
        bs58::encode(self.to_bytes()).with_check().into_string()
    }

    /// Serialize a Hash as bytes.
    ///
    /// # Example
    ///  ```
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized = hash.to_bytes();
    /// ```
    pub fn to_bytes(&self) -> &[u8; HASH_SIZE_BYTES] {
        self.0.as_bytes()
    }

    /// Convert into bytes.
    ///
    /// # Example
    ///  ```
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized = hash.into_bytes();
    /// ```
    pub fn into_bytes(self) -> [u8; HASH_SIZE_BYTES] {
        *self.0.as_bytes()
    }

    /// Deserialize using `bs58` encoding with checksum.
    ///
    /// # Example
    ///  ```
    /// # use serde::{Deserialize, Serialize};
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized: String = hash.to_bs58_check();
    /// let deserialized: Hash = Hash::from_bs58_check(&serialized).unwrap();
    /// ```
    pub fn from_bs58_check(data: &str) -> Result<Hash, MassaHashError> {
        let decoded_bs58_check = bs58::decode(data)
            .with_check(None)
            .into_vec()
            .map_err(|err| MassaHashError::ParsingError(format!("{}", err)))?;
        Ok(Hash::from_bytes(
            &decoded_bs58_check
                .as_slice()
                .try_into()
                .map_err(|err| MassaHashError::ParsingError(format!("{}", err)))?,
        ))
    }

    /// Deserialize a Hash as bytes.
    ///
    /// # Example
    ///  ```
    /// # use serde::{Deserialize, Serialize};
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized = hash.into_bytes();
    /// let deserialized: Hash = Hash::from_bytes(&serialized);
    /// ```
    pub fn from_bytes(data: &[u8; HASH_SIZE_BYTES]) -> Hash {
        Hash(blake3::Hash::from(*data))
    }
}

impl TryFrom<&[u8]> for Hash {
    type Error = MassaHashError;

    /// Try parsing from byte slice.
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        Ok(Hash::from_bytes(value.try_into().map_err(|err| {
            MassaHashError::ParsingError(format!("{}", err))
        })?))
    }
}

/// Serializer for `Hash`
#[derive(Default, Clone)]
pub struct HashSerializer;

impl HashSerializer {
    /// Creates a serializer for `Hash`
    pub const fn new() -> Self {
        Self
    }
}

impl Serializer<Hash> for HashSerializer {
    fn serialize(&self, value: &Hash, buffer: &mut Vec<u8>) -> Result<(), SerializeError> {
        buffer.extend(value.to_bytes());
        Ok(())
    }
}

/// Deserializer for `Hash`
#[derive(Default, Clone)]
pub struct HashDeserializer;

impl HashDeserializer {
    /// Creates a deserializer for `Hash`
    pub const fn new() -> Self {
        Self
    }
}

impl Deserializer<Hash> for HashDeserializer {
    /// ## Example
    /// ```rust
    /// use massa_hash::{Hash, HashDeserializer};
    /// use massa_serialization::{Serializer, Deserializer, DeserializeError};
    ///
    /// let hash_deserializer = HashDeserializer::new();
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let (rest, deserialized) = hash_deserializer.deserialize::<DeserializeError>(hash.to_bytes()).unwrap();
    /// assert_eq!(deserialized, hash);
    /// assert_eq!(rest.len(), 0);
    /// ```
    fn deserialize<'a, E: ParseError<&'a [u8]> + ContextError<&'a [u8]>>(
        &self,
        buffer: &'a [u8],
    ) -> IResult<&'a [u8], Hash, E> {
        context("Failed hash deserialization", |input: &'a [u8]| {
            if buffer.len() < HASH_SIZE_BYTES {
                return Err(nom::Err::Error(ParseError::from_error_kind(
                    input,
                    nom::error::ErrorKind::LengthValue,
                )));
            }
            Ok((
                &buffer[HASH_SIZE_BYTES..],
                Hash::from_bytes(&buffer[..HASH_SIZE_BYTES].try_into().map_err(|_| {
                    nom::Err::Error(ParseError::from_error_kind(
                        input,
                        nom::error::ErrorKind::Fail,
                    ))
                })?),
            ))
        })(buffer)
    }
}

impl ::serde::Serialize for Hash {
    /// `::serde::Serialize` trait for Hash
    /// if the serializer is human readable,
    /// serialization is done using `serialize_bs58_check`
    /// else, it uses `serialize_binary`
    ///
    /// # Example
    ///
    /// Human readable serialization :
    /// ```
    /// # use serde::{Deserialize, Serialize};
    /// # use massa_hash::Hash;
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized: String = serde_json::to_string(&hash).unwrap();
    /// ```
    ///
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.collect_str(&self.to_bs58_check())
        } else {
            s.serialize_bytes(self.to_bytes())
        }
    }
}

impl<'de> ::serde::Deserialize<'de> for Hash {
    /// `::serde::Deserialize` trait for Hash
    /// if the deserializer is human readable,
    /// deserialization is done using `deserialize_bs58_check`
    /// else, it uses `deserialize_binary`
    ///
    /// # Example
    ///
    /// Human readable deserialization :
    /// ```
    /// # use massa_hash::Hash;
    /// # use serde::{Deserialize, Serialize};
    /// let hash = Hash::compute_from(&"hello world".as_bytes());
    /// let serialized: String = serde_json::to_string(&hash).unwrap();
    /// let deserialized: Hash = serde_json::from_str(&serialized).unwrap();
    /// ```
    ///
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<Hash, D::Error> {
        if d.is_human_readable() {
            struct Base58CheckVisitor;

            impl<'de> ::serde::de::Visitor<'de> for Base58CheckVisitor {
                type Value = Hash;

                fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
                    formatter.write_str("an ASCII base58check string")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    if let Ok(v_str) = std::str::from_utf8(v) {
                        Hash::from_bs58_check(v_str).map_err(E::custom)
                    } else {
                        Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
                    }
                }

                fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    Hash::from_bs58_check(v).map_err(E::custom)
                }
            }
            d.deserialize_str(Base58CheckVisitor)
        } else {
            struct BytesVisitor;

            impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
                type Value = Hash;

                fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
                    formatter.write_str("a bytestring")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    Ok(Hash::from_bytes(v.try_into().map_err(E::custom)?))
                }
            }

            d.deserialize_bytes(BytesVisitor)
        }
    }
}

impl FromStr for Hash {
    type Err = MassaHashError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Hash::from_bs58_check(s)
    }
}

#[cfg(test)]
mod tests {
    use serial_test::serial;

    use super::*;

    fn example() -> Hash {
        Hash::compute_from("hello world".as_bytes())
    }

    #[test]
    #[serial]
    fn test_serde_json() {
        let hash = example();
        let serialized = serde_json::to_string(&hash).unwrap();
        let deserialized = serde_json::from_str(&serialized).unwrap();
        assert_eq!(hash, deserialized)
    }

    #[test]
    #[serial]
    fn test_hash() {
        let data = "abc".as_bytes();
        let hash = Hash::compute_from(data);
        let hash_ref: [u8; HASH_SIZE_BYTES] = [
            100, 55, 179, 172, 56, 70, 81, 51, 255, 182, 59, 117, 39, 58, 141, 181, 72, 197, 88,
            70, 93, 121, 219, 3, 253, 53, 156, 108, 213, 189, 157, 133,
        ];
        assert_eq!(hash.into_bytes(), hash_ref);
    }
}