1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
//! Copyright (c) 2022 MASSA LABS <info@massa.net>
//! This module allows launching the execution worker thread, returning objects to communicate with it.
//! The worker thread processes incoming notifications of blockclique changes,
//! orders active and final blocks in queues sorted by increasing slot number,
//! and requests the execution of active and final slots from execution.rs.
#[cfg(feature = "dump-block")]
use crate::storage_backend::StorageBackend;
use crate::{
controller::{ExecutionControllerImpl, ExecutionInputData, ExecutionManagerImpl},
execution::ExecutionState,
request_queue::RequestQueue,
slot_sequencer::SlotSequencer,
};
use massa_event_cache::controller::EventCacheController;
use massa_execution_exports::{
ExecutionBlockMetadata, ExecutionChannels, ExecutionConfig, ExecutionController,
ExecutionError, ExecutionManager, ReadOnlyExecutionOutput, ReadOnlyExecutionRequest,
};
use massa_final_state::FinalStateController;
use massa_metrics::MassaMetrics;
use massa_models::block_id::BlockId;
use massa_models::slot::Slot;
use massa_pos_exports::SelectorController;
use massa_time::MassaTime;
use massa_versioning::versioning::MipStore;
use massa_wallet::Wallet;
use parking_lot::{Condvar, Mutex, RwLock};
use std::sync::Arc;
use std::thread;
use tracing::debug;
/// Structure gathering all elements needed by the execution thread
pub(crate) struct ExecutionThread {
// A copy of the input data allowing access to incoming requests
input_data: Arc<(Condvar, Mutex<ExecutionInputData>)>,
// Total continuous slot sequence
slot_sequencer: SlotSequencer,
// Execution state (see execution.rs) to which execution requests are sent
execution_state: Arc<RwLock<ExecutionState>>,
/// queue for read-only requests and response MPSCs to send back their outputs
readonly_requests: RequestQueue<ReadOnlyExecutionRequest, ReadOnlyExecutionOutput>,
/// Selector controller
selector: Box<dyn SelectorController>,
}
impl ExecutionThread {
/// Creates the `ExecutionThread` structure to gather all data and references
/// needed by the execution worker thread.
///
/// # Arguments
/// * `config`: execution configuration
/// * `input_data`: a copy of the input data interface to get incoming requests from
/// * `execution_state`: an thread-safe shared access to the execution state, which can be bootstrapped or newly created
pub fn new(
config: ExecutionConfig,
input_data: Arc<(Condvar, Mutex<ExecutionInputData>)>,
execution_state: Arc<RwLock<ExecutionState>>,
selector: Box<dyn SelectorController>,
) -> Self {
// get the latest executed final slot, at the output of which the final ledger is attached
// if we are restarting the network, use last genesis slot of the last start.
let final_cursor = std::cmp::max(
execution_state.read().final_cursor,
Slot {
period: config.last_start_period,
thread: config.thread_count.saturating_sub(1),
},
);
// create and return the ExecutionThread
ExecutionThread {
input_data,
readonly_requests: RequestQueue::new(config.readonly_queue_length),
execution_state,
slot_sequencer: SlotSequencer::new(config, final_cursor),
selector,
}
}
/// Append incoming read-only requests to the relevant queue,
/// Cancel those that are in excess if there are too many.
fn update_readonly_requests(
&mut self,
new_requests: RequestQueue<ReadOnlyExecutionRequest, ReadOnlyExecutionOutput>,
) {
// Append incoming readonly requests to our readonly request queue
// Excess requests are cancelled
self.readonly_requests.extend(new_requests);
}
/// Executes a read-only request from the queue, if any.
/// The result of the execution is sent asynchronously through the response channel provided with the request.
///
/// # Returns
/// true if a request was executed, false otherwise
fn execute_one_readonly_request(&mut self) -> bool {
if let Some(req_resp) = self.readonly_requests.pop() {
let (req, resp_tx) = req_resp.into_request_sender_pair();
// Acquire write access to the execution state (for cache updates) and execute the read-only request
let outcome = self.execution_state.write().execute_readonly_request(req);
// Send the execution output through resp_tx.
// Ignore errors because they just mean that the request emitter dropped the received
// because it doesn't need the response anymore.
let _ = resp_tx.send(outcome);
return true;
}
false
}
/// Waits for an event to trigger a new iteration in the execution main loop.
///
/// # Returns
/// `ExecutionInputData` representing the input requests,
/// and a boolean saying whether we should stop the loop.
fn wait_loop_event(&mut self) -> (ExecutionInputData, bool) {
loop {
// lock input data
let mut input_data_lock = self.input_data.1.lock();
// take current input data, resetting it
let input_data: ExecutionInputData = input_data_lock.take();
// if we need to stop, return None
if input_data.stop {
return (input_data, true);
}
// check if there is some input data
if input_data.new_blockclique.is_some()
|| !input_data.finalized_blocks.is_empty()
|| !input_data.block_metadata.is_empty()
|| !input_data.readonly_requests.is_empty()
{
return (input_data, false);
}
// the slot sequencer has a task available for execution
if self.slot_sequencer.is_task_available() {
return (input_data, false);
}
// there are read-only requests ready
if !self.readonly_requests.is_empty() {
return (input_data, false);
}
// Compute when the next slot will be
// This is useful to wait for the next speculative miss to append to active slots.
let wakeup_deadline = self.slot_sequencer.get_next_slot_deadline();
let now = MassaTime::now();
if wakeup_deadline <= now {
// next slot is right now: the loop needs to iterate
return (input_data, false);
}
// Wait to be notified of new input, for at most time_until_next_slot
// The return value is ignored because we don't care what woke up the condition variable.
let _ = self.input_data.0.wait_until(
&mut input_data_lock,
wakeup_deadline
.estimate_instant()
.expect("could not estimate instant"),
);
}
}
/// Main loop of the execution worker
pub fn main_loop(&mut self) {
// This loop restarts every time an execution happens for easier tracking.
// It also prioritizes executions in the following order:
// 1 - final executions
// 2 - speculative executions
// 3 - read-only executions
loop {
let (input_data, stop) = self.wait_loop_event();
debug!("Execution loop triggered, input_data = {}", input_data);
// update the sequence of read-only requests
self.update_readonly_requests(input_data.readonly_requests);
if stop {
// we need to stop
break;
}
// update slot sequencer
self.slot_sequencer.update(
input_data.finalized_blocks,
input_data.new_blockclique,
input_data.block_metadata,
);
// ask the slot sequencer for a task to be executed in priority (final is higher priority than candidate)
let run_result = self.slot_sequencer.run_task_with(
|is_final: bool,
slot: &Slot,
content: Option<&(BlockId, ExecutionBlockMetadata)>| {
if is_final {
self.execution_state.write().execute_final_slot(
slot,
content,
self.selector.clone(),
);
} else {
self.execution_state.write().execute_candidate_slot(
slot,
content,
self.selector.clone(),
);
}
},
);
if let Some(_res) = run_result {
// A slot was executed: continue.
continue;
}
// low priority: execute a read-only request (note that the queue is of finite length), if there is one ready.
self.execute_one_readonly_request();
}
// We are quitting the loop.
// Cancel pending readonly requests
let cancel_err = ExecutionError::ChannelError(
"readonly execution cancelled because the execution worker is closing".into(),
);
self.input_data
.1
.lock()
.take()
.readonly_requests
.cancel(cancel_err);
}
}
/// Launches an execution worker thread and returns an `ExecutionManager` to interact with it
///
/// # parameters
/// * `config`: execution configuration
/// * `final_state`: a thread-safe shared access to the final state for reading and writing
///
/// # Returns
/// A pair `(execution_manager, execution_controller)` where:
/// * `execution_manager`: allows to stop the worker
/// * `execution_controller`: allows sending requests and notifications to the worker
#[allow(clippy::too_many_arguments)]
pub fn start_execution_worker(
config: ExecutionConfig,
final_state: Arc<RwLock<dyn FinalStateController>>,
selector: Box<dyn SelectorController>,
mip_store: MipStore,
channels: ExecutionChannels,
wallet: Arc<RwLock<Wallet>>,
massa_metrics: MassaMetrics,
event_cache: Box<dyn EventCacheController>,
#[cfg(feature = "dump-block")] block_storage_backend: Arc<RwLock<dyn StorageBackend>>,
) -> (Box<dyn ExecutionManager>, Box<dyn ExecutionController>) {
if config.hd_cache_size < config.snip_amount {
panic!("In config.toml, hd_cache_size must be greater than snip_amount");
}
// create an execution state
let execution_state = Arc::new(RwLock::new(ExecutionState::new(
config.clone(),
final_state,
mip_store,
selector.clone(),
channels,
wallet,
massa_metrics,
event_cache,
#[cfg(feature = "dump-block")]
block_storage_backend,
)));
// define the input data interface
let input_data = Arc::new((
Condvar::new(),
Mutex::new(ExecutionInputData::new(config.clone())),
));
// create a controller
let controller = ExecutionControllerImpl {
input_data: input_data.clone(),
execution_state: execution_state.clone(),
};
// launch the execution thread
let input_data_clone = input_data.clone();
// We set the stack size to 200 Mb instead of the default 2 Mb to avoid stack overflows
// as a temporary workaround fully fixed by https://github.com/massalabs/massa/pull/4729
let thread_builder = thread::Builder::new()
.stack_size(200 * 1024 * 1024)
.name("execution".into());
let thread_handle = thread_builder
.spawn(move || {
ExecutionThread::new(config, input_data_clone, execution_state, selector).main_loop();
})
.expect("failed to spawn thread : execution");
// create a manager
let manager = ExecutionManagerImpl {
input_data,
thread_handle: Some(thread_handle),
};
// return the execution manager and controller pair
(Box::new(manager), Box::new(controller))
}