1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// Copyright (c) 2022 MASSA LABS <info@massa.net>
//! The speculative asynchronous pool represents the state of
//! the pool at an arbitrary execution slot.
use crate::active_history::ActiveHistory;
use massa_async_pool::AsyncPoolChanges;
use massa_final_state::FinalStateController;
use massa_ledger_exports::LedgerChanges;
use massa_models::async_msg::{AsyncMessage, AsyncMessageTrigger};
use massa_models::async_msg_id::AsyncMessageId;
use massa_models::slot::Slot;
use massa_models::types::{Applicable, SetUpdateOrDelete};
use parking_lot::RwLock;
use std::{collections::BTreeMap, sync::Arc};
pub(crate) struct SpeculativeAsyncPool {
/// Async pool max length
async_pool_max_length: u64,
// current speculative pool changes
pool_changes: AsyncPoolChanges,
// Local cache of async messages
message_cache: BTreeMap<AsyncMessageId, AsyncMessage>,
}
impl SpeculativeAsyncPool {
/// Creates a new `SpeculativeAsyncPool`
///
/// # Arguments
pub fn new(
final_state: Arc<RwLock<dyn FinalStateController>>,
active_history: Arc<RwLock<ActiveHistory>>,
) -> Self {
// fetch final state
let async_pool_max_length;
let mut message_cache;
{
let final_state_lock = final_state.read();
let async_pool = final_state_lock.get_async_pool();
async_pool_max_length = async_pool.config.max_length;
message_cache = async_pool.message_cache.clone();
}
// apply history
for history_item in active_history.read().0.iter() {
for change in history_item.state_changes.async_pool_changes.0.iter() {
match change {
(id, SetUpdateOrDelete::Set(message)) => {
message_cache.insert(*id, message.clone());
}
(id, SetUpdateOrDelete::Update(message_update)) => {
message_cache.entry(*id).and_modify(|message| {
message.apply(message_update.clone());
});
}
(id, SetUpdateOrDelete::Delete) => {
message_cache.remove(id);
}
}
}
}
SpeculativeAsyncPool {
async_pool_max_length,
pool_changes: Default::default(),
message_cache,
}
}
/// Returns the changes caused to the `SpeculativeAsyncPool` since its creation,
/// and resets their local value to nothing.
/// This must be called after `settle_emitted_messages()`
/// The message_infos should already be removed if taken, no need to do it here.
pub fn take(&mut self) -> AsyncPoolChanges {
std::mem::take(&mut self.pool_changes)
}
/// Takes a snapshot (clone) of the emitted messages
pub fn get_snapshot(&self) -> (AsyncPoolChanges, BTreeMap<AsyncMessageId, AsyncMessage>) {
(self.pool_changes.clone(), self.message_cache.clone())
}
/// Resets the `SpeculativeAsyncPool` emitted messages to a snapshot (see `get_snapshot` method)
pub fn reset_to_snapshot(
&mut self,
snapshot: (AsyncPoolChanges, BTreeMap<AsyncMessageId, AsyncMessage>),
) {
self.pool_changes = snapshot.0;
self.message_cache = snapshot.1;
}
/// Add a new message to the list of changes of this `SpeculativeAsyncPool`
pub fn push_new_message(&mut self, msg: AsyncMessage) {
self.pool_changes.push_add(msg.compute_id(), msg.clone());
self.message_cache.insert(msg.compute_id(), msg);
}
/// Takes a batch of asynchronous messages to execute,
/// removing them from the speculative asynchronous pool and settling their deletion from it
/// in the changes accumulator.
///
/// # Arguments
/// * `slot`: slot at which the batch is taken (allows filtering by validity interval)
/// * `max_gas`: maximum amount of gas available
///
/// # Returns
/// A vector of `AsyncMessage` to execute
pub fn take_batch_to_execute(
&mut self,
slot: Slot,
max_gas: u64,
async_msg_cst_gas_cost: u64,
) -> Vec<(AsyncMessageId, AsyncMessage)> {
let mut available_gas = max_gas;
// Choose which messages to take based on the message_cache
// (all messages are considered: finals, in active_history and in speculative)
let mut wanted_ids = Vec::new();
for (message_id, message) in self.message_cache.iter() {
let corrected_max_gas = message.max_gas.saturating_add(async_msg_cst_gas_cost);
// Note: SecureShareOperation.get_validity_range(...) returns RangeInclusive
// so to be consistent here, use >= & <= checks
if available_gas >= corrected_max_gas
&& Self::is_message_ready_to_execute(
&slot,
&message.validity_start,
&message.validity_end,
)
&& message.can_be_executed
{
available_gas -= corrected_max_gas;
wanted_ids.push(*message_id);
}
}
// Remove the messages_info of the taken messages, and push their deletion in the pool changes
let mut taken_msgs = Vec::with_capacity(wanted_ids.len());
for msg_id in &wanted_ids {
taken_msgs.push((
*msg_id,
self.message_cache.remove(msg_id).unwrap(), // won't panic, items were listed above
));
}
self.delete_messages(wanted_ids);
taken_msgs
}
/// Settle a slot.
/// Consume newly emitted messages into `self.async_pool`, recording changes into `self.settled_changes`.
///
/// # Arguments
/// * slot: slot that is being settled
/// * ledger_changes: ledger changes for that slot, used to see if we can activate some messages
///
/// # Returns
/// the list of deleted `(message_id, message)`, used for reimbursement
pub fn settle_slot(
&mut self,
slot: &Slot,
ledger_changes: &LedgerChanges,
) -> Vec<(AsyncMessageId, AsyncMessage)> {
// Update eliminated_msgs: remove messages that should be removed
// Filter out all messages for which the validity end is expired.
// Note: that the validity_end bound is included in the validity interval of the message.
let mut eliminated_msgs = Vec::new();
self.message_cache.retain(|id, msg| {
if Self::is_message_expired(slot, &msg.validity_end) {
eliminated_msgs.push((*id, msg.clone()));
false
} else {
true
}
});
let mut eliminated_new_messages = Vec::new();
self.pool_changes.0.retain(|k, v| match v {
SetUpdateOrDelete::Set(message) => {
if Self::is_message_expired(slot, &message.validity_end) {
eliminated_new_messages.push((*k, v.clone()));
false
} else {
true
}
}
SetUpdateOrDelete::Update(_v) => true,
SetUpdateOrDelete::Delete => true,
});
eliminated_msgs.extend(eliminated_new_messages.iter().filter_map(|(k, v)| match v {
SetUpdateOrDelete::Set(v) => Some((*k, v.clone())),
SetUpdateOrDelete::Update(_v) => None,
SetUpdateOrDelete::Delete => None,
}));
// Truncate message pool to its max size, removing non-priority items
let excess_count = self
.message_cache
.len()
.saturating_sub(self.async_pool_max_length as usize);
eliminated_msgs.reserve_exact(excess_count);
for _ in 0..excess_count {
eliminated_msgs.push(self.message_cache.pop_last().unwrap()); // will not panic (checked at excess_count computation)
}
// Activate the messages that can be activated (triggered)
for (id, msg) in self.message_cache.iter_mut() {
if let Some(filter) = &msg.trigger {
if is_triggered(filter, ledger_changes) {
msg.can_be_executed = true;
self.pool_changes.push_activate(*id);
}
}
}
// Push message deletion to the pool changes
self.delete_messages(eliminated_msgs.iter().map(|(id, _)| *id).collect());
// reintroduce newly eliminated messages
eliminated_msgs.extend(eliminated_new_messages.iter().filter_map(|(k, v)| match v {
SetUpdateOrDelete::Set(v) => Some((*k, v.clone())),
SetUpdateOrDelete::Update(_v) => None,
SetUpdateOrDelete::Delete => None,
}));
eliminated_msgs
}
fn delete_messages(&mut self, message_ids: Vec<AsyncMessageId>) {
for message_id in message_ids {
self.pool_changes.push_delete(message_id);
}
}
/// Return true if a message (given its validity end) is expired
/// Must be consistent with is_message_valid
fn is_message_expired(slot: &Slot, message_validity_end: &Slot) -> bool {
// Note: SecureShareOperation.get_validity_range(...) returns RangeInclusive
// (for operation validity) so apply the same rule for message validity
*slot > *message_validity_end
}
/// Return true if a message (given its validity_start & validity end) is ready to execute
/// Must be consistent with is_message_expired
fn is_message_ready_to_execute(
slot: &Slot,
message_validity_start: &Slot,
message_validity_end: &Slot,
) -> bool {
// Note: SecureShareOperation.get_validity_range(...) returns RangeInclusive
// (for operation validity) so apply the same rule for message validity
slot >= message_validity_start && slot <= message_validity_end
}
}
/// Check in the ledger changes if a message trigger has been triggered
fn is_triggered(filter: &AsyncMessageTrigger, ledger_changes: &LedgerChanges) -> bool {
ledger_changes.has_writes(&filter.address, filter.datastore_key.clone())
}
#[cfg(test)]
mod tests {
use super::*;
// Test if is_message_expired & is_message_ready_to_execute are consistent
#[test]
fn test_validity() {
let slot1 = Slot::new(6, 0);
let slot2 = Slot::new(9, 0);
let slot_validity_start = Slot::new(4, 0);
let slot_validity_end = Slot::new(8, 0);
assert!(!SpeculativeAsyncPool::is_message_expired(
&slot1,
&slot_validity_end,
));
assert!(SpeculativeAsyncPool::is_message_ready_to_execute(
&slot1,
&slot_validity_start,
&slot_validity_end,
));
assert!(!SpeculativeAsyncPool::is_message_expired(
&slot_validity_start,
&slot_validity_end,
));
assert!(SpeculativeAsyncPool::is_message_ready_to_execute(
&slot_validity_start,
&slot_validity_start,
&slot_validity_end,
));
assert!(!SpeculativeAsyncPool::is_message_expired(
&slot_validity_end,
&slot_validity_end,
));
assert!(SpeculativeAsyncPool::is_message_ready_to_execute(
&slot_validity_end,
&slot_validity_start,
&slot_validity_end,
));
assert!(SpeculativeAsyncPool::is_message_expired(
&slot2,
&slot_validity_end,
));
assert!(!SpeculativeAsyncPool::is_message_ready_to_execute(
&slot2,
&slot_validity_start,
&slot_validity_end,
));
}
}